368 research outputs found

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Anaerobic utilization of pectinous substrates at extremely haloalkaline conditions by Natranaerovirga pectinivora gen. nov., sp. nov., and Natranaerovirga hydrolytica sp. nov., isolated from hypersaline soda lakes

    Get PDF
    Anaerobic enrichments at pH 10, with pectin and polygalacturonates as substrates and inoculated with samples of sediments of hypersaline soda lakes from the Kulunda Steppe (Altai, Russia) demonstrated the potential for microbial pectin degradation up to soda-saturating conditions. The enrichments resulted in the isolation of six strains of obligately anaerobic fermentative bacteria, which represented a novel deep lineage within the order Clostridiales loosely associated with the family Lachnospiraceae. The isolates were rod-shaped and formed terminal round endospores. One of the striking features of the novel group is a very narrow substrate spectrum for growth, restricted to galacturonic acid and its polymers (e.g. pectin). Acetate and formate were the final fermentation products. Growth was possible in a pH range from 8 to 10.5, with an optimum at pH 9.5–10, and in a salinity range from 0.2 to 3.5 M Na+. On the basis of unique phenotypic properties and distinct phylogeny, the pectinolytic isolates are proposed to be assigned to a new genus Natranaerovirga with two species N. hydrolytica (APP2T=DSM24176T=UNIQEM U806T) and N. pectinivora (AP3T=DSM24629T=UNIQEM U805T)

    A novel metabolomic approach used for the comparison of Staphylococcus aureus planktonic cells and biofilm samples

    Get PDF
    Introduction: Bacterial cell characteristics change significantly during differentiation between planktonic and biofilm states. While established methods exist to detect and identify transcriptional and proteomic changes, metabolic fluctuations that distinguish these developmental stages have been less amenable to investigation. Objectives: The objectives of the study were to develop a robust reproducible sample preparation methodology for high throughput biofilm analysis and to determine differences between Staphylococcus aureus in planktonic and biofilm states. Methods: The method uses bead beating in a chloroform/methanol/water extraction solvent to both disrupt cells and quench metabolism. Verification of the method was performed using liquid-chromatography-mass spectrometry. Raw mass-spectrometry data was analysed using an in-house bioinformatics pipe-line incorporating XCMS, MzMatch and in-house R-scripts, with identifications matched to internal standards and metabolite data-base entries. Results: We have demonstrated a novel mechanical bead beating method that has been optimised for the extraction of the metabolome from cells of a clinical Staphylococcus aureus strain existing in a planktonic or biofilm state. This high-throughput method is fast and reproducible, allowing for direct comparison between different bacterial growth states. Significant changes in arginine biosynthesis were identified between the two cell populations. Conclusions: The method described herein represents a valuable tool in studying microbial biochemistry at a molecular level. While the methodology is generally applicable to the lysis and extraction of metabolites from Gram positive bacteria, it is particularly applicable to biofilms. Bacteria that exist as a biofilm are shown to be highly distinct metabolically from their ‘free living’ counterparts, thus highlighting the need to study microbes in different growth states. Metabolomics can successfully distinguish between a planktonic and biofilm growth state. Importantly, this study design, incorporating metabolomics, could be optimised for studying the effects of antimicrobials and drug modes of action, potentially providing explanations and mechanisms of antibiotic resistance and to help devise new antimicrobials

    Differences in External and Internal Cortical Strain with Prosthesis in the Femur

    Get PDF
    The contact between a femoral stem prosthesis and the internal surface of the cortical bone with the stress in the interface is of crucial importance with respect to loosening. However, there are no reports of strain patterns at this site, and the main aim of the current study was to investigate differences of internal and external cortical strain in the proximal femur after insertion of a stem prosthesis. The external cortical strain of a human cadaveric femur was measured with strain gauges before and after implantation of a stem prosthesis. By use of optical fibres embedded longitudinally in the endosteal cortex, deformations at the implant–internal cortex interface could also be measured. The main external deformation during loading of the intact femur occurred as compression of the medial cortex; both at the proximal and distal levels. The direction of the principal strain on the medial and lateral aspects was close to the longitudinal axis of the bone. After resection of the femoral neck and insertion of a stem prosthesis, the changes in external strain values were greatest medially at the proximal level, where the magnitude of deformation in compression was reduced to about half the values measured on the intact specimen. Otherwise, there were rather small changes in external principal strain. However, by comparing vertical strain in the external and internal cortex of the proximal femur, there were great differences in values and patterns at all positions. The transcortical differences in strain varied from compression on one side to distraction on the other and vice versa in some of the positions with a correlation coefficient of 0.07. Our results show that differences exist between the external and internal cortical strain when loading a stem prosthesis. Hence, strain at the internal cortex does not correspond and can not be deducted from measured strain at the external cortex

    From differentiating metabolites to biomarkers

    Get PDF
    The current developments in metabolomics and metabolic profiling technologies have led to the discovery of several new metabolic biomarkers. Finding metabolites present in significantly different levels between sample sets, however, does not necessarily make these metabolites useful biomarkers. The route to valid and applicable biomarkers (biomarker qualification) is long and demands a significant amount of work. In this overview, we critically discuss the current state-of-the-art of metabolic biomarker discovery, with highlights and shortcomings, and suggest a pathway to clinical usefulness

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M⊙1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M⊙1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Prevalence of the metabolic syndrome in Pudong New Area of Shanghai using three proposed definitions among Chinese adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of metabolic syndrome (MS) has been increasing in China in recent years. The aim of this study is to estimate and compare the prevalence of MS among Chinese adults in Shanghai, one of the most economic developed areas in China, using definitions proposed by World Health Organization (WHO), National Cholesterol Education Program Adult Treatment Panel (modified ATP III) and International Diabetes Federation (IDF).</p> <p>Methods</p> <p>This cross-sectional study included 5,584 adults at age 20-79 randomly selected from Pudong New Area of Shanghai, China, through a three-stage sampling. All participants were interviewed in-person between April and July of 2008 to collect information on demographic and lifestyle characteristics. At the interview, anthropometry and blood pressure were measured and bio-specimens were collected.</p> <p>Results</p> <p>The prevalence estimates for the MS increased with age for each definition in men and women, but the estimates varied greatly between the definitions and by sex. The prevalence of the MS was higher in men (20.2%) than in women (18.7%) using WHO definition but this sex difference was reversed when using the modified ATP III (28.4% for men vs. 35.1% for women) and the IDF (15.9% for men vs. 26.7% for women) criteria. The most common metabolic disorder in this population was dyslipidaemia, regardless of the definition used. Substantial agreement, estimated using the kappa statistic, was found between the modified ATP III and IDF definition, whereas the lowest agreement was observed between the WHO and ATP III criteria.</p> <p>Conclusions</p> <p>The MS is highly prevalent among Chinese adults in Pudong New Area of Shanghai and the most prevalent component was dyslipidemia. These findings underscore the importance of prevention and control efforts for the MS in this area and the need for a unified predictive definition for the syndrome for use by clinical practitioners and public health agencies.</p

    Urinary antihypertensive drug metabolite screening using molecular networking coupled to high-resolution mass spectrometry fragmentation

    Get PDF
    Introduction Mass spectrometry is the current technique of choice in studying drug metabolism. High-resolution mass spectrometry in combination with MS/MS gas-phase experiments has the potential to contribute to rapid advances in this field. However, the data emerging from such fragmentation spectral files pose challenges to downstream analysis, given their complexity and size. Objectives This study aims to detect and visualize antihypertensive drug metabolites in untargeted metabolomics experiments based on the spectral similarity of their fragmentation spectra. Furthermore, spectral clusters of endogenous metabolites were also examined. Methods Here we apply a molecular networking approach to seek drugs and their metabolites, in fragmentation spectra from urine derived from a cohort of 26 patients on antihypertensive therapy. The mass spectrometry data was collected on a Thermo Q-Exactive coupled to pHILIC chromatography using data dependent analysis (DDA) MS/MS gas-phase experiments. Results In total, 165 separate drug metabolites were found and structurally annotated (17 by spectral matching and 122 by classification based on a clustered fragmentation pattern). The clusters could be traced to 13 drugs including the known antihypertensives verapamil, losartan and amlodipine. The molecular networking approach also generated clusters of endogenous metabolites, including carnitine derivatives, and conjugates containing glutamine, glutamate and trigonelline. Conclusions The approach offers unprecedented capability in the untargeted identification of drugs and their metabolites at the population level and has great potential to contribute to understanding stratified responses to drugs where differences in drug metabolism may determine treatment outcome

    Preservation of large-scale chromatin structure in FISH experiments

    Get PDF
    The nuclear organization of specific endogenous chromatin regions can be investigated only by fluorescence in situ hybridization (FISH). One of the two fixation procedures is typically applied: (1) buffered formaldehyde or (2) hypotonic shock with methanol acetic acid fixation followed by dropping of nuclei on glass slides and air drying. In this study, we compared the effects of these two procedures and some variations on nuclear morphology and on FISH signals. We analyzed mouse erythroleukemia and mouse embryonic stem cells because their clusters of subcentromeric heterochromatin provide an easy means to assess preservation of chromatin. Qualitative and quantitative analyses revealed that formaldehyde fixation provided good preservation of large-scale chromatin structures, while classical methanol acetic acid fixation after hypotonic treatment severely impaired nuclear shape and led to disruption of chromosome territories, heterochromatin structures, and large transgene arrays. Our data show that such preparations do not faithfully reflect in vivo nuclear architecture. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00412-006-0084-2 and is accessible for authorized users
    • …
    corecore